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: , Under a non-degeneracy assumption on the non-sero entries of a ffiven sparse
- matrix, a polynomially-bounded algorithm is presented that performa row opera-
tions on the given matrix which reduce it to a sparsest possible mat;
3 same row space. For each row of the matrix, the algorithm performs s maximum
cardinality matching on the bipartite graph associated with a subm i
is induced by that row. The dual of the optimal matching then sppcifies the
, row operations that will be performed on that row. W a variant
: algorithm that processes the matrix in place, thus conserving storage and time.
3 The modifications needed to apply the algorithra to matrices that do not neces-
sarily satisfy the non-degeneracy assumptio: Alsc described. A particularly
: promising application of this algorithm is in - Inction of linear constraint
matrices.
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Section 2 Transforms and the One Row Algorithm 1

1. Introduction

An important factor in our present ability to solve many large-scale numeri-
cal problems is the recognition that these problems are nearly always sparse, and
that taking advantage of sparsity can turn a hitherto practically unsolvable prob-
lem into a solvable one. Perhaps the best example of this is in large-scale linear
programming, where highly refined sparse matrix factorisation routines have al-
lowed problems with huge coefficient matrices to be solved (see e.g., Duff (1980)
or Bunch and Rose (1976)). However, although sparsity is known to be helpful,
relatively little attention seems to have been paid to techniques that economically
increase sparsity (decrease density), thereby improving the efficiency of sparse
algorithms. In this context, this paper considers the Sparseness Problem (SP):

Given a large, sparse system of linear equations

Ag =, (1)

find an equivalent system
’ Az =10 | (2)
- which has the minimum possible number of non-sero entries in 4.

Constraints of the form (1) are among the most common in large-scale
optimisation, so that it is potentially very useful to solve (SP). Under a non-
degeneracy assumption, we shall present an efficient algorithm thst solves (SP)
using maximum cardinality matching. Sections 2-4 will assume familiarity with
notions of graph theory and maximum cardinality bipartite matching (sees, ¢.g.,
Lawler (1976)). Section 2 develops most of the machinery needed for the proof,
and uses it to derive an algorithm that solves a subproblem of (SP). In Section 8
‘we use the algorithm of Section 2 to construct the full algorithm, and prove that
it solves (SP). We then give a variant algorithm that uses less space and show
that it also solves (SP). Section 4 discusses the modifications necessary to apply
the algorithm on matrices that do not necessarily satisfy the non-degeneracy
assumption. Finally, Section 5 considers further questions raised by this research.

T P SOOI

2. Tronsforms and the One Row Algerthm

In this paper we shall assume that the matrix A in (1) has full row rank.
! We know from linear algebra that (2) is equivalent to (1) if and only if A = TA
* and § = T') for some square non-singular matrix 7. We are aiming for a general
algorithm that makes no assumptions about any special structure in 4, and
thus can find T almost solely from the sparsity pettern of A (the positions of
the non-seros in A). What can go wrong in this aim is that we can encounter
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2 Making Matrices Optimally Sparse ‘ Section 2

“unexpected” cancellation. To illustrate, consider the following two A’s, with
the same sparsity pattern, treated with the same T

' | 1 —1 1\/1 1 000 1 0000
TA = 1 0 0111 1)=101111})
0 0111 0 01 1

1
1
1—1111000 100 —1 —2
TAn"—'-'(o 01123) (011 2 3).
00111 0 01 1 1
In both cases T rcpronnts the unique linear transformation that adds the mul-
tiples of rows 2 and 3 to row 1 which makes a3 sero and avoids fill-in in a,5.
In the first case the sparsity increased, in the second case it decreased. The
difficulty is that A; has some dependent submatrices that are not apparent from
the sparsity pattern alone. The possibility of this phenomonon makes solving
(SP) too difficult in general, as shown by the following result.

Theorem 1. (Stoclnneyor (1982)) (SP) is NP-Htrd in general. (See the Appendix
for the proof.) [

Thus, to get a polynomial algorithm for (SP), we mm make some assump-
tion about A. Suppose that Ais m X n, and let R C {1,...,m}, C C
{1,...,n}. We denote the submatrix of A indexed by the rows in R and the
columns in C by Apc. The sparsity pattern of Ao naturally induces a bipartite
graph Gro = (R, C, E) where E = {(4,4) € R X C | n¢s % 0). Let M(9) be
the number of edges in a maximum cardinality matching in the bipartite graph
§. It |R| = |C], then the usual expansion of det Azc has at least one non-sero
term precissly when M(Grc) = |R], sod when A is “general®, we expect the
converse of this to be true as well. This ressoning leads us to assume henceforth
that A has the

Matehing Property (MP) rankA;wa-.- u(g,w) for all Rand C.

For example, A; above does not satisfy (MP) whereas Az does. Note that if the
entries of A are independent algebraic indeterminates then (MP) is satisfied.

Since T must be non-singular, G(T') has a perfect matching which we can
sssume without loss of generality is the main diagonal. We can further assume
that t4 = 1, § = 1,2,...,m by scaling the rows of T, so that the non-sero
entries in row § of T indicate the multipliers for the rows to be added to row ¢
of A. Viewed in this way, (SP) breaks down into m one row sparsity problems
(ORSP,), ¢ =1,2,...,m. (ORSP;) is the problem:

Find { M, & 7£ §} 50 that

Z‘,o = A‘,o + 2 LYV T9N | t))
Y]

—
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Section 2 Transforms and the One Row Algorithm 8

has the minimum possible number of non-seros.

Not all solutions to (3) are equally good. Since we expect that the amount of
arithemetic needed to do the calculations in (3) depends upon the number of
rows with non-sero multipliers, ideally we would also like to solve the Strong
(ORSP,):

Among all optimal solutions to (3), find one that minimises

[{% | #0}.

It is not clear at this point that we can solve (SP) by successively solving
(ORSP;) for § = 1,2,...,m; nevertheless we shall concentrate on (ORSP,) in
the remainder of this Section.

A set of multipliers {\; | > 1} for (3) when § = 1 defines the following
index subsets:

U={k>1|M#0},

H={j|%;=0and ay; %0},

S={j|m;= Oand¢15—Oanda”#()forsomekell},
G=HUS,

F={j|B;7#0and ayy =0},

P=FyUsS= {J|a1j=03nd¢;,,;éOforsomekeU},
Z={j|a;=0}.

That is, U is the set of used rows; H, the set of hit columm, where a non-zero
was changed to a sero; S, the set of saved columns, where a sero that we would
have expected to be filled-in (since a,; 7% 0) was not fllled-in; G, the set of good
columns, where the entry was actively manipulated for the better; F' is the set
of filled-In columns; P is the set of potential fill-in columns; and Z is the set of
sero columns. The net decrease in non-zeros in row 1 is then |H| — |F|, which
we want to maximise to solve (ORSP;). The next theorem states the intuitive
result that if £ columns are affected for the good, then at least k independent
rows must have been used (we omit the technical proof).

Theorem 2. For any set of multipliers, M(Gve) = |G|, and hence rank Ayg =
IG|.

Theorem 2 implies in particular that [U| > |G| slways holds. I |U| >
|G|, we can select a |G|-subset of U which perfectly matches to G and use the
corresponding square non-singular (by (MP)) submatrix of A to sero out Asq,
thus achieving the same result with less work. Conversely, if Arc is & square
submatrix with a perfect matching, Theorem 2 ensures that if we use Agc to
sero out A;c, then G = C, i.e., only non-seros in C are hit, and fill-in occurs in
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4 Making Matrices Optimally Sparse Section 2

every position where it would be expected. That is, Theorem 2 shows the crucial
fact that (MP) implies that there is no “unexpected cancellation.”

Hence, we can assume that the canonical situation is that |[U| = |G| and
Guc has a perfect matching. Then Ay is non-singular by (MP), so the {\; }
will be uniquely determined by solving

XTAUG = Asq. (4)

Equation (4) allows us to think of the { \; } as coming from U and G rather than
vice versa, thereby reducing (SP) to the more combinatorial problem of finding
optimal U and G.

Thus we need only consider all possible U, and for each U consider only the
¥ G which match perfectly into U. There are potentially many possible ways to
a select G C {1,2,...,n} so that G perfectly matches to U. The next theorem
shows that for a given U it suffices to check only one such G.

Theorem 3. Let G; and G3 be two sets of columns that perfectly match into
U, and denote the set of hit columns corresponding to G; by H;, & = 1, 2, etc.

L) Then

b \H| = |Fi| = |H| — |Fal.

& Proof. Note that P depends only on U and not on G;. Then it is easy to see

. that [H;| = [U]| — |Si| and |F| = |P| — |Si], so that |H;| — |Fi| = [U| — |P|,

!* i=12 0O

N If we fix a full-rank matching M in Ge., then any row subset U induces a

. unique matched column subset G relative to M. Any such (U, G) pair will have

a perfect matching, namely M restricted to Ayq, so (MP) ensures that Ay will

i be non-singular. Hence the multipliers can be found as in (4). Theorem 3 ensures
that the best (U, G) pair from among this restricted class of such pairs will solve

(ORSP;,).

F Letting the dependence of P on U be explicit, through (MP), Theorem 2 and

Theorem 3 we have reduced the apparently algebraic problem (ORSP,) into the
purely combinatorial one of maximizing |U| — |P(U)| over all U C {2,...,m}.
Define R = {2,...,m}and U= R\ U. Then

max(|U] — [P(V)]) = (m — 1) — min(|PWV)| + V). (5

By definition of U and P(U), every non-sero in Arz (the sero-section of row 1
of A) is contained in either a row in U or a column in P(U). If we call rows and
columns lnes, then in this situation we say that Apz is covered by the lines in
UUP(U). Clearly any such covering of Arz by lines can be written as UU P(U)
for some U C R, so0 by (5), finding maxy(|U| — |P(U)|) is equivalent to finding
s minimum covering of Arz by lines. But by the classic theorem of Konig and
Egervary (see Lawler (1976) p. 190), such a minimum cover can be computed

through a maximum matching in Grs:

......................
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Section 8 Two Algorithms for (SP) 5

Theorem 4. M(Grz) = mingy(|P(U)| + |U), and a maximum matching and a
minimum covering by lines are dual combinatorial objects. [

By the duality theory of matching algorithms, if we find a maximum match-
ing in Grz through a labelling algorithm, then an optimum U for (ORSP,) is
the set of rows reachable via an alternating path from an unmatched row. That
is, Theorem 4 shows that this U solves the right-hand side of (5), so it also solves
the left-hand side, and so must solve (ORSP;).

Even better, the next theorem shows that the optimum U defined above
also solves the Strong (ORSP;). For a network flow problem with source s
and optimal flow f, define the standard minimum cut K* = {§ | there
is an augmenting path s — { under f}. Note that the optimal U defined
above is a standard minimum cut for the usual way of solving a maximum
cardinality bipartite matching problem by converting it to an equivalent network
flow problem.

Theorem 5. In a given network, the standard min cut is a subset of every min
cut. Thus the standard min cut is the same for every optimal flow, hence it
is well-defined and has minimum cardinality among all min cuts (see Ford and
Fulkerson (1962) p. 13 for a proof). [

Theorems 4 and 5 together imply that we can solve the Strong (ORSP;)
through maximum matching, and that the optimal U is unique.

3. Two Algorithms for (SP)

Once we have found the optimal U for each row § (say, U;) through matching,
as noted above we can easily generate the sets G; of columns by choosing G; to
be the set of columns that matches into U; under the fixed matching M. These
(U‘ , Gi) pairs completely determine the non-zero off-diagonal entries of a matrix
T* as defined by (4). The question arises: is T* non-singular?

To answer this question, it is necessary to mvestlga.t.e what the uniqueness
properties of the U; imply for the structure of T*. Define a dlrected graph D
with vertices V = {1,...,m} and edges E = {(k,9) | k€U ); thu: D repre-
sents the sparsity pattern of T*. If the row indices of A and T" are ordered
consistent with the strong component decomposition of D, then the decomposi-
tion induces a block lower-triangular structure on T*, where the diagonal blocks
of T* correspond to the strong components of D.

Theorem 8. If [ € U, and k € U; then l € U;.

Proo! For ease of notatlon‘ let U =U;, U ={1,...,m}\ {§} \ U, P=
PU;), snd P = Z; \ P(U;). Thus U and U partitton the rows of the sero-
section of row § of A, and P and P partition the columns. Recall that the rows
in U and the columns in P are a minimum cover of the sero-section of row i of
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] Makiag Matrices Optimally Sparse Section 3

A by lines. Thus A,p = 0, and, since k € U, A, p = 0. By the minimality
of this cover, the submatrix Agpy has a row-perfect matching, and so [U] lines

are necessary to cover it. Let L be the standard minimum set of lines covering
the A'® sero-section. Since A, = 0 and k ¢ U, the submatrix Apy is part of
the sero-section of row k and so must be covered by the lines in L . Consider
the set of lines L = L* U U \ P. Since the only non-seros in the columns in P
of the k' sero-section occur in rows in U, L is a cover for the sero-section for
row k. The only change in lines between L° and L is in lines pusing through
Agp; since L has only [U] lines passing through Ay, the minimum possible
number, L must also be a minimum cover. Finally, L contum at least as many
rows as L*, so0 that the U associated mth L has at most as many rows as the U
associated with L', namely U;. But U, has the minimum pomble number of
rows for any mmimum cover of the sero-section of row k, so L = L'. But this
implies that Uy C U;. D

The conclusion of Theorem 8 is precisely that the graph D is transitively
cloud This implies that the blocks of the block lower-triangular partmon of
T* are either completely dense or all xero. In particular, U; U{é} = U, U{k}
for ¢ and k in the same strong component of D. Then obumtlom allow us to
prove the following.

Theorem 7. 7" is non-singular.

Proof. Since T is block lower-triangular, it suffices to show that the diagonal
blocks of T* are non-singular. A typical diagonal block is indexed by the vertices
in some strong component, qu As shown above, the set B® = U;U{i}is the
same for all § € B, and B C B". Auumeforconwniomt.hsttmﬂxodmatchu
M is such that row § matches to column ¢, § = 1,...,m. f B = B*, then the
diagonal block associsted with B is clearly just a ro-lcaling of (Aap)"‘ (Apn
is non-singular by (MP)), and so is non-singular. Otherwise, let L = B* \ B.
Then the diagonal block associated with B is a re-scaling of the bottom right
corner of the matrix

(e ) = (G Z)

(this matrix is non-singular by (MP)). But it is well-known that App is non-
l&g;lu E‘! and only if A, is non-singular. But Ay, is indeed non-singular by

Since 7" is non-singular, we can use it to transform A into A. This way of
generating A processes each row in parallel, i.c. each row is solved relative to the
original matrix rather than relative to a partially transformed matrix. We call
this procedure the Parsllel Algorithm (PA).
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. Making Matrices Optimally Sparse Section 4

Theorem 9 together with the preceding remarks prove the final theorem.
Theorem 10. (SA) also solves (SP) under (MP). [

It is easy to get a good bound on the running time of the combinatorial part
of both (PA) and (SA). Let » be the number of non-seros in A, which we can
assume is greater than n. We use the following trick to reduce the running time
of both (PA) and (SA). For (SA) as well as (PA), find a fixed initial maximum
matching on A; this takes O(mv) operations. Then, when finding a maximum
matching in a zero-section, copy over the part of the fixed matching that lies
in the columns of the zero-section as the starting matching; this copying takes
O(m?) time. Since every initially unmatched row in the szero-section matches
to some column outside the zero-section in the fixed matching, the number of
unmatched rows in the starting solution for row ¢’s sero-section can be at most
the number of non-seros in row . Thus the total number of augmentations
j needed over all rows is O(v). Since each augmentation is an O(v) operation, we
g get an O(»?) overall bound for the combinatorics.

3 The time needed to do the numerical part of (PA) and (SA) can be bounded
i

as follows. In the worst case we will have to solve a linear system like (4) of
dimension O(m) for each one of m rows. Solving one such system is bounded by
O(m3), so the numerical part is bounded by O(m*) overall. However, we have
assumed that A is sparse, and there are sparse equations routines that can solve
a system like (4) in time more like O(m3). In practice we expect to see only O(1)
rows whose linear systems are really as large as O(m); most linear systems will
be of sise O(1). Thus under favorable circumstances the mencal computations
could take time as small as O(m?).

4. Practicalities

Very few real-life matrices satisfy (MP). In light of Theorem 5 we cannot
hope to actually solve (SP) on all real matricés, but we can try to apply one of
our algorithms or a variant as an “optimal® heuristic. Ideally, when we apply
our “real” algorithms to real, full-rank matrices, they would be guaranteed to
schieve at least the increase in sparsity that an “ideal” algorithm would achieve
on a matrix with the same sparsity pattern that did satisfy (MP).

I is difficult to anticipate unexpected cancellation with real matrices. A
parallel type of algorithm is therefore unsuitable, as it has to proceed without
knowing where cancellation takes place. On the other hand, a sequential type of
slgorithm can take stock of the cancellation that arises at each step. However,
guaranteeing performance becomes more subtle in the presence of cancellation.
Consider the full-rank matrix

o

(-3 N
o = O
oo
;O wm
0!09

.....................




Section 5 Further Questions and Conclusion )

Any sequential algorithm will pick Uy = {3}, and could pick G; = {2}. This
transformation unexpectedly seros out columns 4 and 5 of row 1. Thus if we
naively process row 2 using this new row 1, we will choose U = {1}. But
the parallel U; = @, which does not contain U as required by the induction
hypothesis of Theorem 8, s0 we can no longer guarantee that our final answer will
be as good as the ideal. (A close reading of that proof of Theorem 8 will reveal
that the only way that this difficulty can arise is when rank Apz < M(Grz) for
some zero-section; in the second sero-section of this example, rank Apz =1 <
2 = M(Grz).)

A simple trick will avoid this problem. As we perform (SA), we certainly
know at each step where we expect the non-zeros to occur for subsequent steps.
If we do encounter unexpected cancellation, we can merely pretend that there
is still a non-zero in the cancelled position. That is, subsequent matchings are
performed as if no unexpected cancellation ever took place, though we keep track
of which “non-zeros” are really zeros. Then the proof of Theorem 8 becomes
valid once again, and the modified (SA) is now guaranteed to produce an answer
at least as good as the “ideal” answer. ’

We now make some remarks about implementing (SA). Linear constraints
are usually presented as a mixture of equalities and inequalities. If these con-
straints are converted to the form (1) by adding a slack variable to each inequality
row, it is easy to see that there is always a maximum cardinality matching in
which every inequality row is matched to its slack column. It is also easy to
see that such rows can never b2 profitably used in the optimal U for any other
row, since the slack variable will always unavoidably fill-in its column. (In fact,
by this same reasoning, if A is known to have an embedded identity matrix,
then A must already be optimally sparse.) Hence (SA) will still work correctly
if we merely treat inequality rows as if they were unmatched, without having
: to explicitly create a slack variable at all. This phenomenon implies that (SA)
) will tend to find better solutions for systems with a high proportion of equality
; constraints.

ek icce. S8 Dok i R

8. Further Questions and Conclusion

Trying to solve the Sparsity Problem as described in this paper raises some

interesting questions. From an applications point of view, the chief question is:

) Does (SA) help in practice or not! The answer to this question must come from

i empirical experience with (SA) on various problems. We have implemented a

: preliminary version of (SA) for this purpose; our results so far are encouraging,

: but we have by no means conclusively demonstrated the usefulness of (SA). We
expect to report our computational experience with (SA) in the near future.

Although it is necessary to keep unexpected seros as phantom non-seros

to guarantee the performance of (SA) on real matrices, it is certainly feasible
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to run the algorithm without ‘this artifice. Can any guarantees be made in
& this case? Does this make much difference in practice? Alternatively, since
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“lucky” cancellation has been observed in nearly all real examples we have tried,
is there some efficient heuristic for (SP) that can take advantage of this and
outperform (SA), perhaps restricted to some subset of interesting problems with
special structure? Finally, what happens when we try to apply these algorithms
to rank-deficient matrices?

‘We shall continue our reseerch on (SP) and shall try to answer some of these
questions in future papers.

Appendix.

Proof. (of Theorem 1) This Theorem and its proof are due to L. Stockmeyer
(1982). See Garey and Johnson (1979) for the definitions of the concepts used in
this proof.

The problem that we shall reduce to (SP) is

Simple Max Cut: Given an undirected graph § = (V, E), partition the nodes of
G into P and V' \ P so as to maximize

{{i,s}€E|s€eP,jEV\P}

Let n = |V'|, m = |E|, let A(§) be the usual (0,1) node-arc incidence matrix
of G, and let A; be the n X 2m matrix which is all sero except for row ¢, which
is half 41 and half —1. Let e be the 2m-vector of all ones and let f be the
(2m(n + 1) + 1)-vector of ones. Now suppose we could solve (SP) on the matrix

B0=(uls) 4 4 A )

Clearly some row of the optimal T for B(G), which we may assume without loss
of generality is the first, will be a multiple of (1, €3, €3, ..., €,) Where ¢; = -1 for
all § € V. (Because of the sise of f the first column of T must be (1,0,0,...,0)
and so this choice for the first row of T causes no singularity problems.) Let
P = {i| ¢ = +1}. Then the number of non-seros in the first row of B(§) is
clearly

@min+1)+1)+n+(m—|{{i,j}EE|i€P,jEV\P}). (N

But since (7) is minimised by the optimal 7', P also solves the Simple Max Cut
Problem for §. O
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